Self-consistent simulation studies of periodically focused intense charged-particle beams.

نویسندگان

  • Chen
  • Jameson
چکیده

A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below twenty percent to prevent space-charge-dominated beams from developing halos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Chaotic Particle Motion Using Adiabatic Thermal Beams

Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found th...

متن کامل

Adiabatic-nonadiabatic transition in warm long-range interacting systems: the transport of intense inhomogeneous beams.

We investigate the role of the temperature in the onset of singularities and the consequent breakdown in a macroscopic fluid model for long-range interacting systems. In particular, we consider an adiabatic fluid description for the transport of intense inhomogeneous charged particle beams. We find that there exists a critical temperature below which the fluid model always develops a singularit...

متن کامل

Delta-f Simulations of Electron-ion Two-stream Instability

Two-stream instabilities in intense charged particle beams, described self-consistently by the nonlinear Vlasov-Maxwell equations, are studied using a 3D multispecies perturbative particle simulation method. The beam equilibrium, stability, and transport (BEST) code is used to simulate the linear and nonlinear properties of the electron-proton (e-p) two-stream instability observed in the Proton...

متن کامل

3D Simulation Studies of the Two-Stream Instability in Intense Particle Beams Based on the Vlasov-Maxwell Equations

Two-stream instabilities in intense charged particle beams, described self-consistently by the nonlinear Vlasov-Maxwell equations, are studied using a 3D multispecies perturbative particle simulation method. The newly developed beam equilibrium, stability, and transport (BEST) code is used to simulate the linear and nonlinear properties of the electron-proton (e-p) two-stream instability observ...

متن کامل

Self-Consistent hot spot tracing particles by kinetic simulations: With the emphasis on Cusp particle entry

One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 1995